If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.83t^2-7t+9=0
a = 0.83; b = -7; c = +9;
Δ = b2-4ac
Δ = -72-4·0.83·9
Δ = 19.12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{19.12}}{2*0.83}=\frac{7-\sqrt{19.12}}{1.66} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{19.12}}{2*0.83}=\frac{7+\sqrt{19.12}}{1.66} $
| -4=2×3^2-3k3+k | | 1/3y-2=1/5y | | x+(2x-2)+45=180 | | 7h=-(2h-18)h= | | -4=23^2-3k3+k | | 3(2x+3)-5x=-2-3 | | 0.5^x-3=2^-75x | | 3j+1=1 | | 4j+5=-5 | | 1/2x+1/3x=350 | | 25-21p=0 | | 8x-4=3x-1= | | 0.68*1.8x=7.3x-2.13 | | x=4x+2x+10+x-5 | | 117-25x=-26x-30 | | 13d+4=28 | | (4x-10)=(1x) | | 21x+77=43x-11 | | |2m-10|=8 | | 7x–21=49 | | 7y–21=49 | | 4/6+5=2x=10 | | -3÷2x+2=-4 | | 3/8b-1=5 | | -3x(2)+13x+4=0 | | 11/4x-10=3/4x+20 | | 11/4x-10=3/4x=20 | | 7y+3=4y-18=1 | | 2x-13=7x+7 | | 1x-1=4x+1x-8+3x | | -30=-400x | | 20+0.3n=1.7(n−8) |